(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(f(x))
g(x) → +(x, s(x))
f(s(x)) → +(f(x), s(f(x)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
f(s(s(x6_2))) →+ g(+(f(x6_2), s(f(x6_2))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x6_2 / s(s(x6_2))].
The result substitution is [ ].
The rewrite sequence
f(s(s(x6_2))) →+ g(+(f(x6_2), s(f(x6_2))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1,0].
The pumping substitution is [x6_2 / s(s(x6_2))].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0') → 1'
f(s(x)) → g(f(x))
g(x) → +'(x, s(x))
f(s(x)) → +'(f(x), s(f(x)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(0') → 1'
f(s(x)) → g(f(x))
g(x) → +'(x, s(x))
f(s(x)) → +'(f(x), s(f(x)))
Types:
f :: 0':1':s:+' → 0':1':s:+'
0' :: 0':1':s:+'
1' :: 0':1':s:+'
s :: 0':1':s:+' → 0':1':s:+'
g :: 0':1':s:+' → 0':1':s:+'
+' :: 0':1':s:+' → 0':1':s:+' → 0':1':s:+'
hole_0':1':s:+'1_0 :: 0':1':s:+'
gen_0':1':s:+'2_0 :: Nat → 0':1':s:+'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
0') →
1'f(
s(
x)) →
g(
f(
x))
g(
x) →
+'(
x,
s(
x))
f(
s(
x)) →
+'(
f(
x),
s(
f(
x)))
Types:
f :: 0':1':s:+' → 0':1':s:+'
0' :: 0':1':s:+'
1' :: 0':1':s:+'
s :: 0':1':s:+' → 0':1':s:+'
g :: 0':1':s:+' → 0':1':s:+'
+' :: 0':1':s:+' → 0':1':s:+' → 0':1':s:+'
hole_0':1':s:+'1_0 :: 0':1':s:+'
gen_0':1':s:+'2_0 :: Nat → 0':1':s:+'
Generator Equations:
gen_0':1':s:+'2_0(0) ⇔ 0'
gen_0':1':s:+'2_0(+(x, 1)) ⇔ s(gen_0':1':s:+'2_0(x))
The following defined symbols remain to be analysed:
f
(9) RewriteLemmaProof (EQUIVALENT transformation)
Proved the following rewrite lemma:
f(
gen_0':1':s:+'2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(2
n)
Induction Base:
f(gen_0':1':s:+'2_0(+(1, 0)))
Induction Step:
f(gen_0':1':s:+'2_0(+(1, +(n4_0, 1)))) →RΩ(1)
+'(f(gen_0':1':s:+'2_0(+(1, n4_0))), s(f(gen_0':1':s:+'2_0(+(1, n4_0))))) →IH
+'(*3_0, s(f(gen_0':1':s:+'2_0(+(1, n4_0))))) →IH
+'(*3_0, s(*3_0))
We have rt ∈ Ω(2n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(2n)
(10) BOUNDS(2^n, INF)